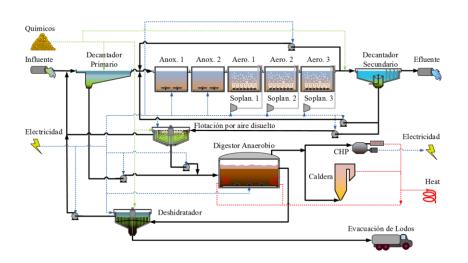


Exploración por simulación de la eliminación biológica de P y recuperación de estruvita en EDAR urbanas

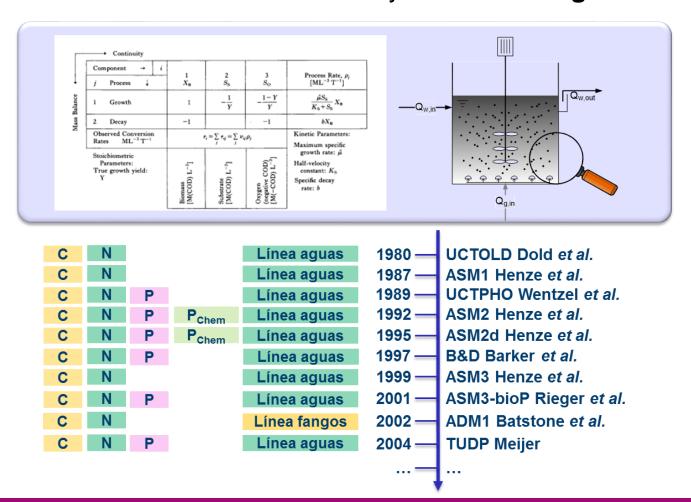
Eduardo Ayesa

- Director de la División de Agua y Salud de Ceit-IK4
- Profesor de TECNUN (Universidad de Navarra)

Centro tecnológico


Consultoría Spin-off de Ceit-IK4

- Las modernas EDAR son sistemas de tratamiento cada vez más flexibles y eficientes, pero también más complejos
 - Múltiples procesos físicos, químicos y biológicos interrelacionados entre sí
 - Procesos dinámicos con diferentes tiempos de respuesta
 - Los criterios tradicionales de diseño y operación (rígida) son insuficientes
 - Las herramientas de simulación son muy apropiadas para optimizar las EDAR


- Los simuladores de EDAR son ya una tecnología madura
 - En continua evolución y contrastación desde los años 80
 - Los nuevos modelos permiten estudios globales de toda la planta teniendo en cuenta las interrelaciones entre las líneas de agua y de fangos

Los simuladores de EDAR son ya una tecnología madura

Modelos GEI

- Hiatt et al., 2008
- Ni et al., 2011, 2013, 2014
- Flores-Alsina et al., 2011
- Guo et al., 2012, 2014
- Mampaey et al., 2013
- Snip et al., 2014

Modelos térmicos

- Gillot & Vanrolleghem, 2003
- Makinia et al., 2005
- Gómez et al., 2007
- de Gracia et al., 2009
- Fernández-Arévalo et al., 2014
- Corbala-Robles et al., 2016

Electricidad

Recursos en el agua residual

Modelos de costes

- Gillot et al., 1999
- Copp 2002
- Descoins et al., 2012
- Fernández-Arévalo et al., 2015

Tratamiento aguas

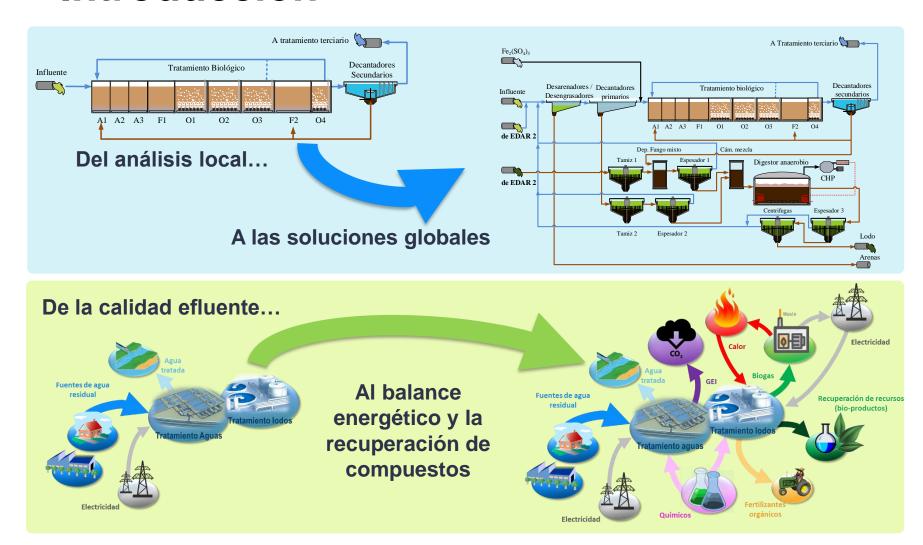
Modelos Plant-Wide

- Ekama et al., 2006
- Grau et al., 2007
- Jeppsson et al., 2007

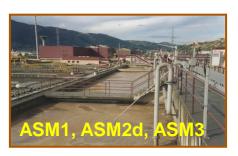
Tratamiento lodos

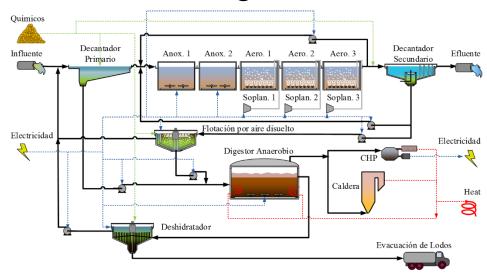
- Barat et al., 2013
- Ikumi et al., 2014, 2015
- Flores-Alsina et al., 2015

Plant-Wide análisis


Modelos Físico-Químicos

- Batstone et al., 2012
- Flores-Alsina et al., 2015
- Hauduc et al., 2015
- Kazadi Mbamba et al., 2015
- Lizarralde et al., 2015

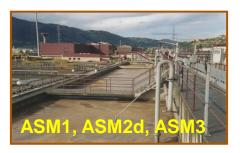



Modelado matemático de las EDAR

Problemática de la Simulación integral

- Diferentes niveles de descripción e hipótesis
- Limitaciones de compatibilidad entre componentes
 - Nitrógeno orgánico en ASM1 y ASM2, ADM1
 - Sustrato carbonoso en ASM1, ASM2 y ADM1
 - Sólidos Suspendidos Totales (SST) y DQO
 - Alcalinidad en ASM1 y ASM2 y predicción de pH en ADM1

Dificultad para realizar de manera sencilla y rigurosa un modelo global



Modelado matemático de las EDAR

Problemática de la Simulación integral

Transformadores específicos entre los modelos estándar

- ASM1-ADM1 (Copp et al., 2003), Interfaces CBIM (Vanrolleghem et al., 2005)
- No siempre garantizan la continuidad de masa elemental
- Su diseño y utilización en cualquier escenario de simulación estacionario o dinámico requiere un conocimiento avanzado

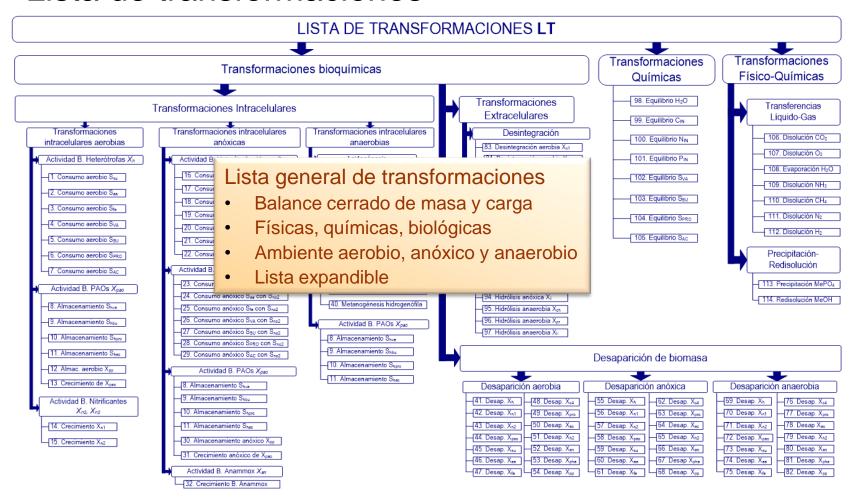
Modelo Único General

- Componentes y transformaciones necesarias para reproducir todos los procesos en una EDAR avanzada
- Biowin (Jones and Tákacs, 2004), BNRM1 (Seco et al., 2004)
- No posee flexibilidad para adaptarse al caso de estudio
- Continua ampliación del modelo

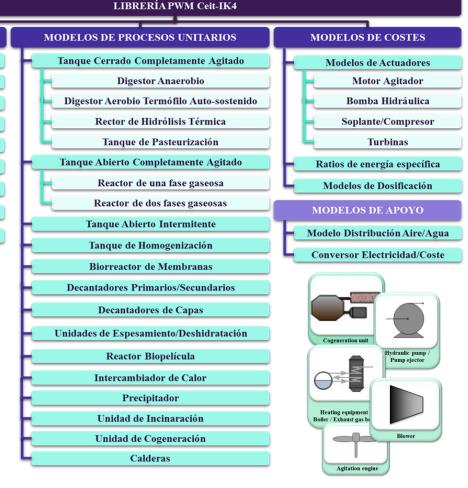
Objetivos de la **metodología PWM de Ceit-IK4** (entre 2004 y 2017)

- Síntesis de conocimiento y experiencia (más de 20 tesis doctorales en modelado de EDAR)
- Modelos de procesos unitarios **compatibles** y directamente **conectables** entre sí.
- De complejidad **adaptable** a las necesidades de cada caso de estudio
- Predicciones similares a los modelos estándar (ASM1, ASM2d, ASM3, ADM1, etc.)
- Librería de modelos flexible y **expandible** para incorporar nuevas tecnologías y modelos

Procedimiento


- Lista ampliable de transformaciones físicas, químicas, biológicas en condiciones aerobias, anóxicas, anaerobias
- Selección de la categoría (vector de componentes) necesaria para cada caso de estudio
- Vector de componentes único en toda la planta y para todos los procesos

Lista de transformaciones


Librería de modelos

CATEGORIAS CN CN AnD C2N_AnD CNPchem_AnD CNP_AnD CNPprec_AnD C2NPchem_AnD C2NP AnD C2NPprec AnD

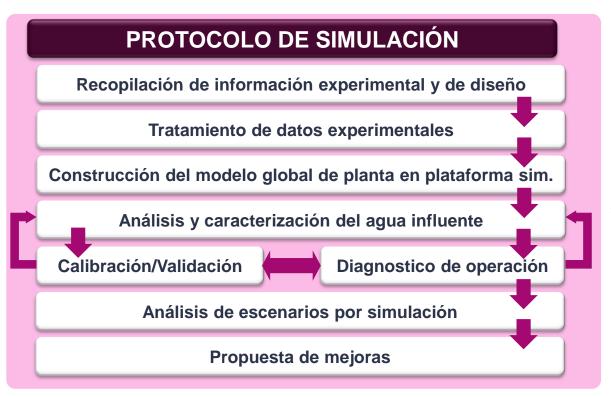
Librería de modelos PWM

- Categorias (vector componentes)
- **Procesos Unitarios** (transformaciones + transporte)
- Costes (asociados a variables manipulables)
- Lista expandible

Fundamentos

Totalmente documentada en publicaciones en Water Research (entre 2007 y 2017)

- 1. P. Grau, M. de Gracia, P. Vanrolleghem and E. Ayesa (2007). A new Plant-wide modelling methodology for WWTPs. Water Research 41, No. 19, pp. 4357-4372.
- M. de Gracia, P. Grau, E. Huete, J. Gómez, J.L. García-Heras and E. Ayesa (2009). New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: model building and experimental verification. *Water Research* 43, pp. 4626-4642.
- 3. T. Fernández-Arévalo, I. Lizarralde, P. Grau and E. Ayesa (2014). New systematic methodology for incorporating dynamic thermal modelling in multi-phase biochemical reactors. *Water* **Research 60**, pp. 141-155.
- 4. I. Lizarralde, T. Fernández-Arévalo, C. Brouckaert, P. Vanrolleghem, D.S. Ikumi, G. A. Ekama, E. Ayesa and P. Grau (2015). A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models. Water Research 74, pp. 239-256.
- 5. T. Fernández-Arévalo, I. Lizarralde, F. Fdz-Polanco, S.I. Pérez-Elvira, J.M. Garrido, S. Puig, M. Poch, P. Grau and E. Ayesa (2017). Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. *Water Research* 118, pp. 272-288



Simulación de EDAR

Protocolo

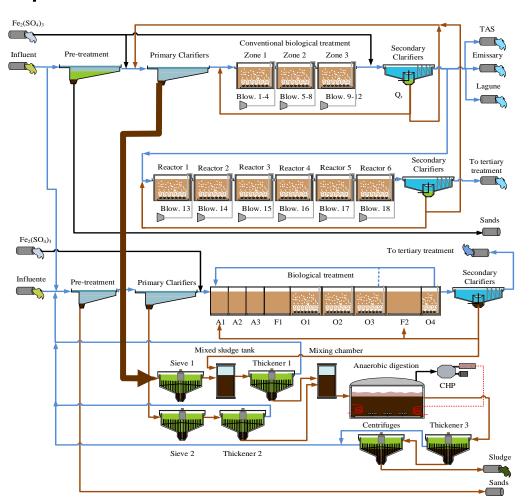
Herramienta para la detección de datos Herramientas pare la caracterización del influente y para la reconstrucción de datos

Optimización de la EDAR de Palma

El estudio fue llevado a cabo para la empresa municipal de aguas y alcantarillado de Palma de Mallorca (EMAYA)

OBJETIVO

- Diagnóstico de las EDARs
- Optimización de la operación
- Análisis y priorización de mejoras en la EDAR


EDAR PALMA 1

Optimización de la EDAR de Palma

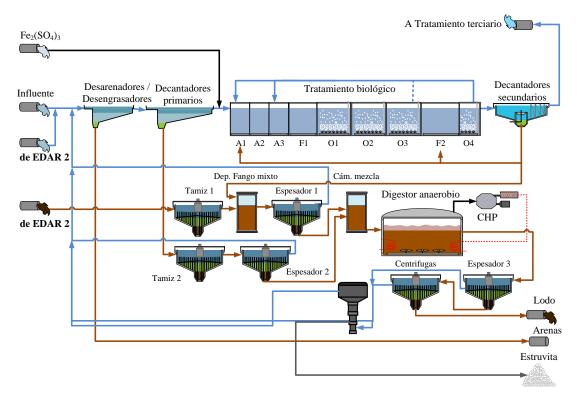
EDAR Palma 2

- 350.000 pe
- Eliminación de DQO y Nitrificación

Modelo "integral" de dos EDAR conectadas

EDAR Palma 1

- 460.000 pe
- Eliminación biológica de DQO/N y eliminación química de P

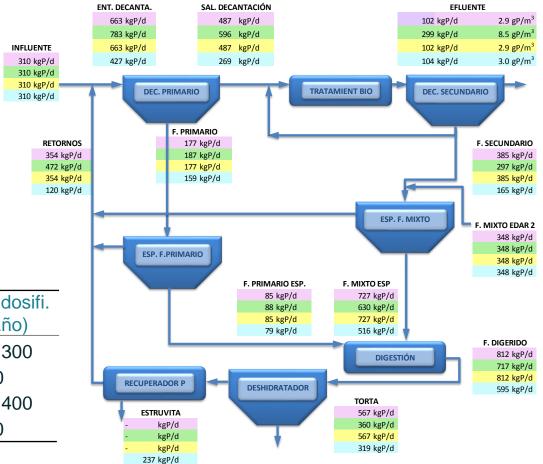


Optimización de la EDAR de Palma

OBJETIVO

Análisis tecno/económico de las alternativas para la recuperación/eliminación de P

- DN con Dosificación de Fe⁺³ (dosificación actual)
- $2 A^2O$
- 3. A²O + precipitación simultanea de P (70 % de la dosificación actual)
- 4. A²O con precipitación de estruvita


Optimización de la EDAR de Palma

OBJETIVO

Análisis tecno/económico de las alternativas para la recuperación/eliminación de P

- DN con Dosificación de Fe⁺³ (dosificación actual)
- A^2O
- A²O + precipitación simultanea de P (70 % de la dosificación actual)
- A²O con precipitación de estruvita

	P _T efluente	Ahorro dosific.	Coste dosifi.
	(gP/m^3)	(Alt 1)	(€/año)
Alt. 1	2,9	-	326.300
Alt. 2	8,5	100%	0
Alt. 3	2,9	30%	228.400
Alt. 4	3,0	100%	0

Maximización de la producción de estruvita en la EDAR Sur (Madrid)

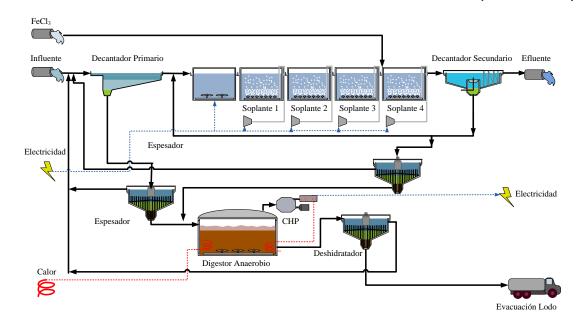
El estudio fue llevado a cabo para la empresa Veolia Water Ibérica

OBJETIVO

Maximizar la producción de estruvita mediante la simulación de diferentes configuraciones de planta

Características de la Planta

- 3.000.000 pe
- 6 líneas paralelas que reciben un caudal total de 260.000 m³/d
- Diseñada para la eliminación biológica de C y la eliminación biológica + química del P
- Digestión anaerobia

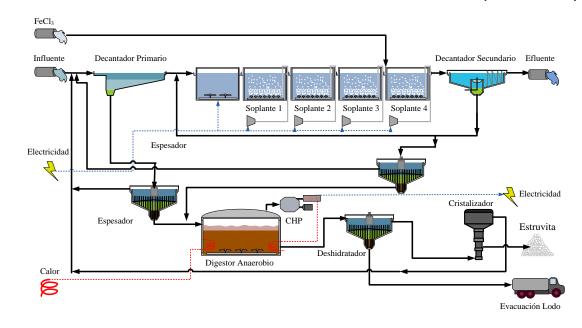


Maximización de la producción de estruvita en la EDAR Sur (Madrid)

OBJETIVO

Maximizar la producción de estruvita mediante la simulación de diferentes configuraciones de planta

Configuración de planta actual (AO)

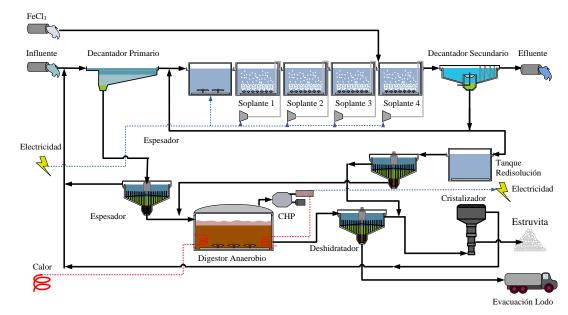


Maximización de la producción de estruvita en la EDAR Sur (Madrid)

OBJETIVO

Maximizar la producción de estruvita mediante la simulación de diferentes configuraciones de planta

- Configuración de planta actual (AO)
- AO + Cristalizador



Maximización de la producción de estruvita en la EDAR Sur (Madrid)

OBJETIVO

Maximizar la producción de estruvita mediante la simulación de diferentes configuraciones de planta

- Configuración de planta actual (AO)
- AO + Cristalizador
- AO + Cristalizador + Tanque de redisolución de fósforo

	Escenario A	Escenario B	Escenario C
Producción de estruvita (t/año)		1499 (100%)	1488 (-0,73%)
Dosificación MgCl ₂ (t/año)		763 (100%)	545 (-28,6%)
Dosificación NaOH (t/año)		450 (100%)	445 (-1,1%)
Precipitación natural estruvita (t/año)	139 (100%)	105 (-24,2%)	47 (-66,31%)
Producción de fango (t/año)	16490 (100%)	15400 (-6,6%)	14864 (-9,8%)
Dosificación de FeCl ₃ (t/año)	4742 (100 %)	2371 (-50%)	2371 (-50%)

Conclusiones

- Los simuladores de EDAR son ya una **tecnología madura** y capaz de ser aplicados a casos de estudio de plantas reales
- Los simuladores dinámicos de EDAR son herramientas muy útiles para optimizar la operación de las EDAR
 - Explorar y comparar el comportamiento integral de la planta en diferentes escenarios de operación
 - Analizar comparativamente diferentes configuraciones de planta, mejoras y remodelaciones, priorizando las inversiones
 - Ej.: Analizar el potencial de una EDAR para eliminar **P biológicamente** y recuperar estruvita
- 3. Para ser realmente útiles, requieren de un cierto conocimiento de la herramienta y un procedimiento riguroso de aplicación